Inorg. Chem. **2007**, 46, 2959−2961

Core/Shell Oligometallic Template Synthesis of Macrocyclic Hexaoxime

Shigehisa Akine, Shuichi Sunaga, Takanori Taniguchi, Hayato Miyazaki, and Tatsuya Nabeshima*

*Department of Chemistry, Uni*V*ersity of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan* Received December 6, 2006

A 36-membered macrocyclic hexaoxime was quantitatively obtained by [3 + 3] condensation of dialdehyde **2** with diamine **3** using La^{3+} (core metal) and Zn^{2+} (shell metal) as a novel core/shell template, while the yield was very low in the absence of the metal ions. The high yield can be attributed to the efficient formation of a $3:3:1$ complex of dialdehyde 2, Zn^{2+} , and La^{3+} , which readily gives the macrocycle keeping the Zn₃La core/shell tetranuclear cluster structure.

Macrocyclic polyimines are useful ligands to synthesize a variety of coordination compounds.¹ In most cases, such macrocycles are prepared by condensation of diamines and dialdehydes in the presence of appropriate metal ions as a template to avoid the formation of higher oligomeric or polymeric products. If several metal ions cooperatively act as a template for the macrocyclization, metal clusters incorporated in the macrocycles would form instantaneously. Indeed, template reaction using multiple (four, 2 five, 3 and six⁴) metal ions leads to $[2 + 2]$, $[3 + 3]$, or $[4 + 4]$ macrocycles with a metal cluster core, which exhibits interesting magnetic or electrochemical properties. Most of the multiple-template syntheses employ only one kind of metal, and all of the template metal ions in the resulting clusters are located essentially in the same coordination environment. Although clusters⁵ or nanoparticles⁶ with a hierarchical core/shell structure have attracted much attention,

- (2) (a) McKee, V.; Shepard, W. B. *J. Chem. Soc., Chem. Commun.* **1985**, 158-159. (b) Bell, M.; Edwards, A. J.; Hoskins, B. F.; Kachab, E.
H : Robson, R. *J. Chem. Soc., Chem. Commun*, **1987**, 1852-1854 H.; Robson, R. *J. Chem. Soc., Chem. Commun.* **¹⁹⁸⁷**, 1852-1854. (c) McKee, V.; Tandon, S. S. *J. Chem. Soc., Chem. Commun.* **1988**, ³⁸⁵-387. (d) Sakiyama, H.; Motoda, K.; Okawa, H.; Kida, S. *Chem.* Lett. **1991**, 1133-1136. (e) Asato, E.; Furutachi, H.; Kawahashi, T.; Mikuriya, M. J. Chem. Soc., Dalton Trans. **1995**, 3897-3904. (f) Mikuriya, M. *J. Chem. Soc., Dalton Trans.* **¹⁹⁹⁵**, 3897-3904. (f) Aguiari, A.; Brianese, N.; Tamburini, S.; Vigato, P. A. *Inorg. Chim. Acta* **¹⁹⁹⁵**, *²³⁵*, 233-244.
- (3) Wang, J.; Luo, Q.-H.; Shen, M.-C.; Huang, X.-Y.; Wu, Q.-J. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹⁵**, 2373-2374.
- (4) (a) Hoskins, B. F.; Robson, R.; Smith, P. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹⁰**, 488-489. (b) Tandon, S. S.; Thompson, L. K.; Bridson, J. N. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹²**, 911-913.
- (5) (a) Pecoraro, V. L.; Stemmler, A. J.; Gibney, B. R.; Bodwin, J. J.; Wang, H.; Kampf, J. W.; Barwinski, A. In *Progress in Inorganic Chemistry*; Karlin, K. D., Ed.; Wiley: New York, 1996; Vol. 45, Chapter 2, pp 83-177. (b) Bodwin, J. J.; Cutland, A. D.; Malkani, R. G.; Pecoraro, V. L. *Coord. Chem. Re*V*.* **²⁰⁰¹**, *²¹⁶*-*217*, 489-512.

10.1021/ic062327s CCC: \$37.00 © 2007 American Chemical Society **Inorganic Chemistry,** Vol. 46, No. 8, 2007 **2959** Published on Web 03/16/2007

there have been no reports on macrocyclization that is accompanied by the simultaneous formation of core/shell clusters. The macrocyclization should require a wellprogrammed building block that has suitable geometry not only to readily form a macrocycle but also to interact with both core and shell metals. Here we describe a one-pot synthesis of core/shell-type Zn_3La and Zn_6 clusters with a macrocyclic ligand using 2,3-dihydroxybenzene-1,4-dicarbaldehyde (**2**)7 and 1,2-bis(aminooxy)ethane (**3**)8 for the building blocks of the macrocyclic framework. A 36 membered [3 + 3] macrocyclic hexaoxime ligand **¹** was obtained in high yield by the core/shell template reaction, though the yield was very low in the absence of the core and shell metal ions (Scheme 1).

We examined the condensation reaction of dialdehyde **2** with diamine 3 , which could give macrocyclic oligo(salamo)⁹

- (8) Dixon, D. W.; Weiss, R. H. *J. Org. Chem.* **¹⁹⁸⁴**, *⁴⁹*, 4487-4494.
- (9) H₂salamo = 1,2-bis(salicylideneaminooxy)ethane. See: (a) Akine, S.; Taniguchi, T.; Nabeshima, T. *Chem. Lett.* **²⁰⁰¹**, 682-683. (b) Akine, S.; Taniguchi, T.; Dong, W.; Masubuchi, S.; Nabeshima, T. *J. Org. Chem.* **²⁰⁰⁵**, *⁷⁰*, 1704-1711.

Scheme 1. Concept of Core/Shell Oligometallic Template Macrocyclization

^{*} To whom correspondence should be addressed. E-mail: nabesima@ chem.tsukuba.ac.jp.

⁽¹⁾ Vigato, P. A.; Tamburini, S. *Coord. Chem. Re*V*.* **²⁰⁰⁴**, *²⁴⁸*, 1717-2128.

⁽⁶⁾ For recent examples, see: (a) Lee, I. S.; Lee, N.; Park, J.; Kim, B. H.; Yi, Y.-W.; Kim, T.; Kim, T. K.; Lee, I. H.; Paik, S. R.; Hyeon, T. *J. Am. Chem. Soc.* **²⁰⁰⁶**, *¹²⁸*, 10658-10659. (b) Yang, Y.; Chen, O.; Angerhofer, A.; Cao, Y. C. *J. Am. Chem. Soc.* **²⁰⁰⁶**, *¹²⁸*, 12428-12429.

^{(7) (}a) Akine, S.; Taniguchi, T.; Nabeshima, T. *Tetrahedron Lett.* **2001**, *⁴²*, 8861-8864. (b) Akine, S.; Taniguchi, T.; Nabeshima, T. *J. Am. Chem. Soc.* **²⁰⁰⁶**, *¹²⁸*, 15765-15774.

Figure 1. GPC profiles of the condensation products of dialdehyde **2** and diamine **3** in the presence of template metals monitored by UV absorption at 301 nm: (a) no metal; (b) Zn^{2+} (1 equiv) and La^{3+} ($\frac{1}{3}$ equiv); (c) La^{3+} $(1/3 \text{ equiv})$; (d) Zn^{2+} (2 equiv).

ligands of various sizes. We have recently reported a nontemplate high-yield synthesis of the imine analogues, triangular tris(saloph) ligands,^{7a,10} which are useful for the synthesis of core/shell-type homometallic $Zn_7^{10,11}$ and heterometallic Zn_3La^{10a} clusters. Intramolecular hydrogen bonds and the reversibility of $C=N$ bond formation are probably important for the high-yield macrocyclization.^{7a,12}

Unlike the case of the imine analogues, the nontemplated condensation reaction of **²** with **³** [a chloroform-methanol (3:2) solution (2.0 mM)] gave $[3 + 3]$ macrocycle 1^{13} in low yield. A gel permeation chromatography (GPC) profile of the reaction mixture showed several peaks corresponding to $[2 + 2]$ (54 min) and $[3 + 3]$ (48 min) macrocycles in addition to linear oligomers such as $[2 + 1]$ and $[3 + 2]$ condensation products (Figure 1a). The formation of higher oligomeric products is also evident from broad peaks around $33-40$ min. The isolated yield of $[3 + 3]$ macrocycle 1 was up to 15% even if a high-dilution technique was employed. The low selectivity is presumably due to conformational flexibility of the $-OCH_2CH_2O$ moieties and stability of the oxime bonds, which resist C=N bond recombination. 9

X-ray crystallographic analysis revealed the structure of $[3 + 3]$ macrocycle 1 (Figure 2).¹⁴ In the crystal structure, one (O5-O6) of the three catechol moieties directs outward

- (10) (a) Nabeshima, T.; Miyazaki, H.; Iwasaki, A.; Akine, S.; Saiki, T.; Ikeda, C.; Sato, S. *Chem. Lett.* **²⁰⁰⁶**, *³⁵*, 1070-1071. (b) Nabeshima, T.; Miyazaki, H.; Iwasaki, A.; Akine, S.; Saiki, T.; Ikeda, C. *Tetrahedron* **2007**, in press.
- (11) Gallant, A. J.; Chong, J. H.; MacLachlan, M. J. *Inorg. Chem.* **2006**,
- *⁴⁵*, 5248-5250. (12) Akine, S.; Hashimoto, D.; Saiki, T.; Nabeshima, T. *Tetrahedron Lett.*
- **2004**, *45*, 4225–4227.

(13) **1**: colorless crystals, mp 231–233 °C; ¹H NMR (400 MHz, CDCl₃)
 δ 4.51 (s. 12H), 6.65 (s. 6H), 8.19 (s. 6H), 9.67 (s. 6H)^{, 13}C NMR *δ* 4.51 (s, 12H), 6.65 (s, 6H), 8.19 (s, 6H), 9.67 (s, 6H); ¹³C NMR (100 MHz, CDCl3) *δ* 73.75, 117.60, 120.70, 145.68, 151.32; ESI-MS obsd m/z 667.2 ([M + H]⁺). Anal. Calcd for C₃₀H₃₀N₆O₁₂: C, 54.05; H, 4.54; N, 12.61. Found: C, 54.16; H, 4.64; N, 12.52.
- (14) Crystallographic data for **1**·EtOH (712.67): monoclinic, $P2_1/n$, $a =$ 7.5740(10) Å, $b = 30.3840(10)$ Å, $c = 15.2630(10)$ Å, $\beta = 93.050$ - (2) °, $V = 3507.5(5)$ \mathring{A}^3 , $Z = 4$, $T = 120$ K, $R1 = 0.0513$ $[I > 2\sigma(I)],$ $wR2 = 0.1455$ (all data).²⁰

Figure 2. Crystal structure of $[3 + 3]$ macrocycle 1 with thermal ellipsoids drawn at the 50% probability level. A cocrystallized ethanol molecule is also shown.

Figure 3. X-ray structures of (A) $[L^2_3 Zn_3 La]^{3+}$ and (B) $[L^1 Zn_3 La]^{3+}$. Counter anions and solvent molecules coordinating to the metal centers are omitted for clarity.

and one (O3) of the six phenol O atoms did not form $O-H\cdot\cdot\cdot$ N hydrogen bonds to an oxime nitrogen (N2). This fact suggests that $[3 + 3]$ macrocycle 1 does not always adopt a conformation suitable for complexation at three N_2O_2 and one O_6 sites.

When the condensation reaction of **2** with **3** was carried out in the presence of $\frac{1}{3}$ equiv of La^{3+} (core metal) and 1 equiv of Zn^{2+} (shell metal) (Scheme 1), the yield of $[3 + 3]$ macrocycle **1** was dramatically improved. The reaction afforded a yellow Zn-La mixed-metal complex, from which pure free $[3 + 3]$ macrocycle 1 was obtained by demetalation with acid. The overall yield of $[3 + 3]$ macrocycle 1 was 94%. No other macrocycles were observed in the chromatogram for the reaction mixture (Figure 1b).

The effectiveness of the Zn-La mixed-metal template can be explained by the formation of a $Zn₃La tetranuclear$ complex of dialdehyde 2.¹H NMR and electrospray ionization mass spectrometry (ESI-MS) investigation showed that a discrete cluster $[L^2_3 Zn_3 La]^{3+}$ was formed quantitatively when dialdehyde $2 (=H_2L^2)$ was mixed with Zn^{2+} (1 equiv)
and La³⁺ (¹/₂ equiv) X-ray crystallography revealed the and La³⁺ ($\frac{1}{3}$ equiv). X-ray crystallography revealed the structure of $[L^2_3 Zn_3 L a]^{3+}$ in which the salicylaldehyde moieties of 2 coordinate to shell metal Zn^{2+} and the catechol moiety to the core metal La^{3+} (Figure 3A).^{15,16} When the tetranuclear cluster $[L^2_3 Zn_3 La]^{3+}$ was allowed to react with diamine **3**, the complex was completely converted to the

⁽¹⁵⁾ Crystallographic data for $[L^2_3Zn_3La(NO_3)_2(MeOH)_6](NO_3)$. MeOH (1237 68): triclinic $P\bar{l}$, $a = 10322(4)$ Å $b = 14213(6)$ Å $c =$ (1237.68): triclinic, *P*1, $a = 10.322(4)$ Å, $b = 14.213(6)$ Å, $c = 14.728(7)$ Å $\alpha = 94.079(18)^{\circ}$ $\beta = 92.159(16)^{\circ}$ $\nu = 95.342(15)^{\circ}$ *V* 14.728(7) Å, α = 94.079(18)°, β = 92.159(16)°, γ = 95.342(15)°, *V*
= 2143.8(15) Å³, *Z* = 2, *T* = 120 K, R1 = 0.0445 [*I* > 2*σ*(*I*)], wR2
= 0.1027 (all data).²⁰ $= 0.1027$ (all data).²⁰

Scheme 2. Efficient Formation of $[3 + 3]$ Macrocycle 1 Using a Zn-La Mixed-Metal Template

corresponding macrocyclic complex $[L^1Zn_3La]^{3+}$. There is a surprising similarity between the X-ray crystal structures of $[L^2_3 Zn_3 La]^{3+}$ and $[L^1 Zn_3 La]^{3+}$ (Figure 3).^{17,18} This indicates that the macrocyclization requires very little structural change in the dialdehyde moieties fixed by the $Zn₃La metal$ centers. The complete conversion is probably due to the ready formation of seven-membered metallacycles (Scheme 2).

It is important to clarify whether both the core and shell metals are essential for the high-yield synthesis. When the core metal $(La^{3+}, \frac{1}{3}$ equiv) only was used as a template, the yield of $[3 + 3]$ macrocycle was not improved (Figure 1c). On the other hand, the use of more than 2 equiv of Zn^{2+} (6 equiv per $[3 + 3]$ macrocycle) considerably changed the product ratio. The GPC analysis showed that the mixture contains $[3 + 3]$ macrocycle and a small amount of $[4 + 4]$ macrocycle (45 min) (Figure 1d).

To elucidate the effect of Zn^{2+} in the absence of La^{3+} , the intermediary species in the reaction mixture was analyzed by spectrometric methods. Although the 1:2 mixture of dialdehyde 2 and $Zn(OAc)_2$ gave a complicated mixture, subsequent reaction with diamine **3** afforded a nearly single species. The MS spectrum indicates the formation of a hexanuclear cluster $(m/z \ 1290.8, [L^{1}Zn_{6}(OAc)_{3}(MeO)_{2}]^{+}),$ and the ${}^{1}H$ NMR spectrum showed a simple C_s -symmetric spectral pattern. X-ray crystallographic analysis revealed that the Zn^{II} complex was a hexanuclear cluster $\text{L}^{\text{I}}\text{Zn}_6$ having the $[3 + 3]$ macrocyclic ligand (Figure 4).¹⁹ There are three Zn atoms (Zn4, Zn5, and Zn6) in the $O₆$ core site of the macrocycle in addition to ones in the shell N_2O_2 sites (Zn1, Zn2, and Zn3). The three Zn atoms in the core part are bridged with a μ_3 -hydroxo group (O13). The hexanuclear

Figure 4. Crystal structure of $[L^1Zn_6(OAc)_5(OH)(MeOH)]$ with thermal ellipsoids drawn at the 30% probability level. One of the two crystallographically independent molecules is shown.

structure is kept also in solution on the basis of the ESI-MS and ¹ H NMR data.

When the amount of Zn^{2+} was reduced to 1 equiv (i.e., 3) equiv per $[3 + 3]$ macrocycle), the formation of insoluble materials considerably increased although $[3 + 3]$ macrocycle **1** was still the major product. Obviously, Zn^{2+} acts as a template not only at the N_2O_2 site but also at the O_6 site. It is reasonable to consider that excess Zn^{2+} probably gathers three molecules of dialdehyde **2** to give a trimeric homometallic cluster $[L^2_3 Zn_n]$. The subsequent treatment of the cluster with diamine **3** readily afforded the $[3 + 3]$ macrocyclic complex $[L^1Zn_6]$, from which the metal-free $[3 + 3]$
macrocycle 1 was isolated as a major product macrocycle **1** was isolated as a major product.

In summary, we synthesized $[3 + 3]$ macrocyclic tris-(salamo) ligand **1** by a one-pot procedure using a novel core/ shell oligometallic template method. The method is applicable to the synthesis of well-defined homo- and heterometallic clusters, which may exhibit interesting magnetic and photochemical properties. Moreover, preliminary investigation showed that the isolated free $[3 + 3]$ macrocycle again forms the $(3d)_{6}$ homometallic and $(3d)_{3}(4f)$ heterometallic clusters upon complexation with the corresponding 3d and/or 4f metal sources. Further investigation on such a metal-imprinting synthesis of clusters is now in progress.

Acknowledgment. This work was supported by Grantsin Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: X-ray crystallographic data for **1**·EtOH, [L²₃Zn₃La(NO₃)₂(MeOH)₆](NO₃)·MeOH, [L¹Zn₃La-
(NO₃)·(MeOH)5], and H¹Zn-(OAc)·(OH)(MeOH)1·2MeOH+1 5H-O $(NO₃)₃(MeOH)₂$], and $[L¹Zn₆(OAc)₅(OH)(MeOH)¹2MeOH¹1.5H₂O$ in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC062327S

⁽¹⁶⁾ For related self-assembled metallamacrocycles, see: (a) Saalfrank, R. W.; Löw, N.; Hampel, F.; Stachel, H.-D. *Angew. Chem., Int. Ed. Engl.* **1996**, 35, 2209-2210. (b) Saalfrank, R. W.; Löw, N.; Kareth, S.; Seitz, V.; Hampel, F.; Stalke, D.; Teichert, M. *Angew. Chem., Int. Ed.* **1998**,

³⁷, 172–175.

(17) Crystallographic data for [L¹Zn₃La(NO₃)₃(MeOH)₂] (1245.69): ortho*rhombic, Pca*2₁, *a* = 16.617(4) Å, *b* = 11.409(2) Å, *c* = 21.955(3) Å, *V* = 4162.3(14) Å³, *Z* = 4, *T* = 120 K, R1 = 0.0232 [*I* > 2*σ*(*I*)], wR2 = 0.0511 (all data) ²⁰ $wR2 = 0.0511$ (all data).²⁰

⁽¹⁸⁾ For related zinc-lanthanide complexes of salamo or acyclic oligo- (salamo) ligands, see: (a) Akine, S.; Taniguchi, T.; Nabeshima, T. *Angew. Chem., Int. Ed.* **²⁰⁰²**, *⁴¹*, 4670-4673. (b) Akine, S.; Taniguchi, T.; Saiki, T.; Nabeshima, T. *J. Am. Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 540-541. (c) Akine, S.; Taniguchi, T.; Nabeshima, T. *Chem. Lett.* **2006**, *35*, ⁶⁰⁴-605. (d) Akine, S.; Taniguchi, T.; Matsumoto, T.; Nabeshima, T. *Chem. Commun.* **²⁰⁰⁶**, 4961-4963. See also ref 7b.

⁽¹⁹⁾ Crystallographic data for [L¹Zn₆(OAc)₅(OH)(MeOH)]·2MeOH·1.5H₂O (1488.15) : triclinic, *P*1, $a = 14.503(5)$ Å, $b = 18.608(5)$ Å, $c =$ 21.841(6) Å, $\alpha = 101.521(10)^\circ$, $\beta = 99.117(12)^\circ$, $\gamma = 96.200(10)^\circ$, $V = 5643(3)$ Å³, $Z = 4$, $T = 120$ K, $R1 = 0.0804$ $[I > 2\sigma(I)]$, wR2 $= 0.2244$ (all data).²⁰

⁽²⁰⁾ Sheldrick, G. M. *SHELXL 97, Program for crystal structure refinement*; University of Göttingen: Göttingen, Germany, 1997.